
Homework #4

Quantum Mechanics

Alex Stroebel

February 26, 2019

Problem #2.24

If a beam of spin-2/3 particles is input to a Stern Gerlach analyzer, there are four
possible output beams whose deflections are consistant with magnetic moments
arising from spin angular momentum components 3

2 h̄,
1
2 h̄,−

1
2 h̄, and − 3

2 h̄. For
a spin-3/2 system:

a) Write down the eigenvalue equations for the Sz operator
b) Write down the matrix representation of the Sz eigenstates.
c) Write down the matrix representation of the Sz operator.
d) Write down the eigenvalue equations for the S2 operator.
e) Write down the matrix representation of the S2 operator.

Sln:

a)

The three eigenvalue equations for the Sz operator are given by

Sz |2〉 =
3

2
h̄ |2〉

Sz |1〉 =
1

2
h̄ |1〉

Sz |−1〉 = −1

2
h̄ |−1〉

Sz |−2〉 = −3

2
h̄ |−2〉

Where the three states have been labled |2〉 , |1〉 , |−1〉 , and |−2〉
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b)

Since all these states must be orthogonal, we can represent them as,

|2〉 .=


1
0
0
0

 , |1〉 .=


0
1
0
0

 , |−1〉 .=


0
0
1
0

 , |−2〉 .=


0
0
0
1

 ,

c)

Since Sz is represented by a square matrix, by looking at the equations deter-
mined by parts a) and b), we know Sz must be a 4 × 4 matrix. So we can
say,

Sz
.
=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


Further, since we are representing this system in its own basis set, the operator
Sz can be represented by a diagonal matrix ( meaning aij = 0 if i 6= j) and
the diagonal components of this matrix will be the eigenvalues ( meaning a11 =
λ1, a22 = λ2, a33 = λ3, and a44 = λ4). Therefore,

Sz
.
=
h̄

2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3


d)

In general, the S2 operator can be represented by

s2 |sm〉 = s(s+ 1)h̄2 |sm〉 (1)

where s represents the spin of the system, and m represents the eigenvalue
divided by h̄ (this is so m comes out to be either an integer or half integer for
simplicity reasons). In this instance, s = 3

2 and m = 3
2 ,

1
2 ,−

1
2and − 3

2 .We then
have the equations

S2

∣∣∣∣32 3

2

〉
=

15

4
h̄2

∣∣∣∣32 3

2

〉
S2

∣∣∣∣32 1

2

〉
=

15

4
h̄2

∣∣∣∣32 1

2

〉
S2

∣∣∣∣32 ,−1

2

〉
=

15

4
h̄2

∣∣∣∣32 ,−1

2

〉
S2

∣∣∣∣32 ,−3

2

〉
=

15

4
h̄2

∣∣∣∣32 ,−3

2

〉
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or, using the more familiar notation used throuought the rest of this problem,

S2 |2〉 =
15

4
h̄2 |2〉

S2 |1〉 =
15

4
h̄2 |1〉

S2 |−1〉 =
15

4
h̄2 |−1〉

S2 |−1〉 =
15

4
h̄2 |−2〉

e)

Looking at the abouve situation, it can be seen that S2 must be represented by
a 4× 4 matrix. Therefore S2 has the form

S2 .
=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


From the equations in d), we get the following:

From the equation for |2〉:

S2 |2〉 =
15

4
h̄2 |2〉 =⇒


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




1
0
0
0

 =
15

4
h̄2


1
0
0
0



=⇒


a11

a21

a31

a41

 =
15

4
h̄2


1
0
0
0

 =⇒


a11 = 15

4 h̄
2

a21 = 0

a31 = 0

a41 = 0

From the equation for |1〉:

S2 |1〉 =
15

4
h̄2 |1〉 =⇒


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




0
1
0
0

 =
15

4
h̄2


0
1
0
0



=⇒


a12

a22

a32

a42

 =
15

4
h̄2


0
1
0
0

 =⇒


a12 = 0

a22 = 15
4 h̄

2

a32 = 0

a42 = 0
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From the equation for |−1〉:

S2 |−1〉 =
15

4
h̄2 |−1〉 =⇒


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




0
0
1
0

 =
15

4
h̄2


0
0
1
0



=⇒


a13

a23

a33

a43

 =
15

4
h̄2


0
0
1
0

 =⇒


a13 = 0

a23 = 0

a33 = 15
4 h̄

2

a43 = 0

and finaly, from the equation for |−2〉:

S2 |−2〉 =
15

4
h̄2 |−2〉 =⇒


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




0
0
0
1

 =
15

4
h̄2


0
0
0
1



=⇒


a14

a24

a34

a44

 =
15

4
h̄2


0
0
0
1

 =⇒


a13 = 0

a23 = 0

a33 = 0

a43 = 15
4 h̄

2

Therefore, the S2 matrix representation can be written as,

S2 .
=

15

4
h̄2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Problem #2.25

Are the projection operators P+ and P− Hermitian? Explain.

Sln:

P+ = |+〉 〈+| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)
P− = |−〉 〈−| =

(
0
1

)(
0 1

)
=

(
0 0
0 1

)
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For a matrix, A, to be Hermitian, A† = A.

P †+ =

(
1 0
0 0

)†
=

(
1 0
0 0

)
= P+

P †− =

(
0 0
0 1

)†
=

(
0 0
0 1

)
= P−

Therefore, yes P+ and P− are Hermitian.1

Problem #3.2

Show that the probability of a measurement of the energy is time independent
for a general state |ψ(t)〉 =

∑
n cn(t) |En〉 that evolves due to a time-independent

Hamiltonian. Show that the probability of measurements of other observables
are also time independent if those observables commute with the Hamiltonian.

Sln:

Since the Hamiltonian is time independent, the time evolution of the state |ψ〉
can be given by

|ψ(t)〉 =
∑
n

cne
−iEnt/h̄ |En〉

The probability, P, of measuring of measuring |ψ〉 as having a particular energy,
En, at a particulat time t, can be given by

Pn(t) = | 〈En|ψ(t)〉 |2

= | 〈En| (
∑
n

cne
−iEnt/h̄ |En〉)|2

= |cne−iEnt/h̄|2

= (c∗n)(cn)(eiEnt/h̄)(e−iEnt/h̄)

= |cn|2e0

= |cn|2

Further, the probability of measuring a particular value, ai for a generic observ-
able A, that commutes with the Hamiltonian is,

Pai = | 〈ai|ψ(t)〉 |2

Also since
∑
n |En〉 forms a compleat bsis set,

|ai〉 =
∑
n

bne
−iEnt/h̄ |En〉

1The † notation represents both a transpose and complect conjuget transformation
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We know that A and H commute. Therefore they have the same eigenvectors.2

We know the eigenvectors of H are En|all1 . Thus the eigenvectors of A must also
be En|all1 . This means ai must be some Ei.

Pai = | 〈ai|ψ(t)〉 |2

= | 〈Ei| (
all∑
n

cne
−iEnt/h̄ |En〉)|2

= |
all∑
n

cne
−iEnt/h̄ 〈Ei|En〉 |2

= |cie−iEit/h̄|2

= |ci|2

Therefore, for any observable that commutes with the Hamiltonian, is time
independent.

Problem #3.13

Let the matrix representation of the Hamiltonian of a three-state system be

H =

E0 0 A
0 E1 0
A 0 E0


using the basis states |1〉 , |2〉 , and |3〉

a) If the state of the system at time t = 0 is |ψ(0)〉 = |2〉, what is the probability
that the system is in state |2〉 at time t?

b) If, instead, the state of the system at time t = 0 is |ψ(0)〉 = |3〉, what is the
probability that the system is in state |3〉 at timet?

Sln:

The Hamiltonian is
H |En〉 = En |En〉

2I have not found a way to simply prove this
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Lets diagonalize the Hamiltonian to determine the allowed values for En

det(H − λI) =

∣∣∣∣∣∣
E0 − λ 0 A

0 E1 − λ 0
A 0 E0 − λ

∣∣∣∣∣∣ = 0

(E0 − λ)(E1 − λ)(E0 − λ) +A(−A)(E1 − λ) = 0

(E1 − λ)[(E0 − λ)2 −A2] = 0
E1 − λ = 0 =⇒ λ = E1

E0 − λ+A = 0 =⇒ λ = E0 +A

E0 − λ−A = 0 =⇒ λ = E0 −A

Now, this will be used to determine the eigenvectors (Which are the energy
vectors) E0 0 A

0 E1 0
A 0 E0

x1

y1

z1

 = E1

x1

y1

z1



E0x1 +Az1 = E1x1

E1y1 = E1y1

Ax1 + E0z1 = E1z1

|E1〉 =

0
1
0


E0 0 A

0 E1 0
A 0 E0

x2

y2

z2

 = (E0 +A)

x2

y2

z2



E0x2 +Az2 = (E0 +A)x2

E1y2 = (E0 +A)y2

Ax2 + E0z2 = (E0 +A)z2

|E2〉 = Norm

1
0
1

 =
1√
2

1
0
1


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E0 0 A
0 E1 0
A 0 E0

x3

y3

z3

 = (E0 −A)

x3

y3

z3



E0x3 +Az3 = (E0 −A)x3

E1y3 = (E0 −A)y3

Ax3 + E0z3 = (E0 −A)z3

|E3〉 = Norm

 1
0
−1

 =
1√
2

 1
0
−1


From this we can determine the relationship between the basis states and the
energy states.

|E1〉 = |2〉

|E2〉 =
1√
2

(|1〉+ |3〉)

|E3〉 =
1√
2

(|1〉 − |3〉)

and finaly

|1〉 =
1√
2

(|E2〉+ |E3〉)

|2〉 = |E1〉

|3〉 =
1√
2

(|E2〉 − |E3〉)

Now that thats out of the way, lets get started on the problems!

a)

At t = 0
|ψ(0)〉 = |2〉 = |E1〉

From here we can look at the time evolution

|ψ(t)〉 = e−iE1t/h̄ |E1〉

Now the probability of measureing |ψ(t)〉 of being |2〉 is

P2 = | 〈2|ψ(t)〉 |2

= | 〈E1| (e−iE1t/h̄ |E1〉)|2

= |(e−iE1t/h̄ 〈E1|E1〉)|2

= |(e−iE1t/h̄|2

= 1
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This is independent of time.

b)

For |ψ(0)〉 = |3〉, we have

|ψ(0)〉 = |3〉 =
1√
2

(|E2〉 − |E3〉)

and the time evolution

|ψ(t)〉 =
1√
2

(e−iE2t/h̄ |E2〉 − e−iE3t/h̄ |E3〉)

The probability of measuring |3〉 at time t is

P3 = | 〈3|ψ(t)〉 |2

= |(〈E2|
1√
2
− 〈E3|

1√
2

)(
1√
2
e−iE2t/h̄ |E2〉 −

1√
2
e−iE3t/h̄ |E3〉)|2

= |1
2
e−iE2t/h̄ +

1

2
e−iE3t/h̄|2

=
1

4
|e−iE2t/h̄ + e−iE3t/h̄|2

Since The energy of |E2〉 = E0 +A and the energy of |E3〉 = E0 +A. . .

=
1

4

∣∣∣e−i(E0+A)t/h̄ + e−i(E0−A)t/h̄
∣∣∣2

=
1

4

∣∣∣e−iE0t/h̄
(
e−iAt/h̄ + eiAt/h̄

)∣∣∣2
=

1

2

∣∣∣e−iE0t/h̄
∣∣∣2∣∣∣∣2 cosh

(
−iAt
h̄

)∣∣∣∣2
=

∣∣∣∣cos

(
−At
h̄

)∣∣∣∣
= cos2

(
At

h̄

)
It can be seen that this is not independent of time.

Problem #3.15

Show that the general energy state superposition |ψ(t)〉 =
∑
n cne

−iEnt/h̄ |En〉
satisfies the Schrödinger equation, but not energy eigenvalue equation.
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Sln:
3 The Scrödinger Equation. . .

ih̄
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉

ih̄
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉

ih̄
d

dt

∑
n

cne
−iEnt/h̄ |En〉 = H(t)

∑
n

cne
−iEnt/h̄ |En〉

ih̄
∑
n

cn
−i
h̄
e−iEnt/h̄En |En〉 =

∑
n

cne
−iEnt/h̄H(t) |En〉

∑
n

cne
−iEnt/h̄En |En〉 =

∑
n

cne
−iEnt/h̄En |En〉

Now to show |ψ(t)〉 is not an energy eigenvalue. Presenting. . . the energy
eigenvalue equation!

H |ψ〉 = E |ψ〉

where E is the eigenvalue of ψ

H

(∑
n

cne
−iEnt/h̄ |En〉

)
= E

(∑
n

cne
−iEnt/h̄ |En〉

)
∑
n

cne
−iEnt/h̄H |En〉) =

∑
n

cne
−iEnt/h̄E |En〉

∑
n

cne
−iEnt/h̄En |En〉) =

∑
n

cne
−iEnt/h̄E |En〉 .

This implies E +E1, E = E2, . . . , E = En which itself implies E1 = E2 = · · · =
En. Therefore the only way |ψ〉 can satisfy the energy eigenvalue equation is if it
is only represented by one energy eigenstate ( and is therefor that energy eigen-
state itself). Therefore, this, in general, does not satify the energy eigenvalue
equation.

Problem #3.16

For a spin-1/2 system undergoing Rabi oscillations, (i.e., Rabi flopping) assume
that the resonance condition ω = ω0 holds.

3this problem is unfinished as I do not understand it. Specifically, how to compare the H
term.

10



a) Solve the differential equations for the coefficients α±(t). Use your results to

find the transformed state vector
∣∣∣ψ̃(t)

〉
and the state vector |ψ(t)〉, assuming

the most general initial state of the system.

b) Verify that a π-pluse (ω1t = π)produces a spin flip (i.e., P+(t) = P−(0) and

P−(t) = P+(0)). Calculate both the transformed state vector
∣∣∣ψ̃(t)

〉
and the

state vector |ψ(t)〉.

c) Assume that the interaction time is such that ω1t = π/2. Find the effect on
the syaytem if the initial state is |+〉.

d) Discuss the difference between the original reference frame and the rotating
reference frame in light of your results.

Sln:

(a)

The differential equations for α± are given in the book (p.89 eq.(3.94))

ih̄α̇+(t) = − h̄∆ω

2
α+(t) +

h̄ω1

2
α−(t)

ih̄α̇−(t) =
h̄ω1

2
α+(t) +

h̄∆ω

2
α−(t)

Where ∆ω = ω − ω0. Since one of the conditions imposed isω = ω0, we then
know that ∆ω = 0. We then have,

ih̄α̇+(t) =
h̄ω1

2
α−(t)

ih̄α̇+(t)− h̄ω1

2
α−(t) = 0

iα̇+(t)− ω1

2
α−(t) = 0

ih̄α̇−(t) =
h̄ω1

2
α+(t)

ih̄α̇−(t)− h̄ω1

2
α+(t) = 0

iα̇−(t)
ω1

2
α+(t) = 0

These equations are satisfied if

α+(t) = Ae−iω1t/2 +Beiω1t/2 α−(t) = Ae−1ω1t/2 −Beiω1t/2

Lets check to make sure this is true4

iα̇+(t)− ω1

2
α−(t) = 0

i
[
−Aiω1

2
e−i|omega1t/2 +Bi

ω1

2
eiω1t/2

]
− ω1

2

[
Ae−1ω1t/2 −Beiω1t/2

]
= 0

A
ω1

2
e−i|omega1t/2 −Bω1

2
eiω1t/2 −Aω1

2
e−1ω1t/2 −Bω1

2
eiω1t/2 = 0

0 = 0

4This is the 8th set of equations I have done this check for. Needless to say, equations 1-5
did not work.
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iα̇−(t) +
ω1

2
α+(t) = 0

i
[
−Aiω1

2
e−i|omega1t/2 −Biω1

2
eiω1t/2

]
− ω1

2

[
Ae−1ω1t/2 +Beiω1t/2

]
= 0

A
ω1

2
e−i|omega1t/2 +B

ω1

2
eiω1t/2 −Aω1

2
e−1ω1t/2 +B

ω1

2
eiω1t/2 = 0

0 = 0

Therefore, ∣∣∣ψ̃(t)
〉
.
=

(
α+(t)
α−(t)

)
=

(
Ae−iω1t/2 +Beiω1t/2

Ae−1ω1t/2 −Beiω1t/2

)
We know from the book (pg.89 eq.(3.94)), that |ψ〉 can be written as

|ψ〉 .=
(
α+(t)e−iωt/2

α−(t)eiωt/2

)
=

((
Ae−iω1t/2 +Beiω1t/2

)
e−iω0t/2(

Ae−iω1t/2 −Beiω1t/2
)
eiω0t/2

)
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In order to say anything about probabilities, we5 must make sure this vector is
normalized/

1 = 〈ψ|ψ〉

=

[
C∗
(
A∗eiω1t/2 +B∗e−iω1t/2

)
eiω0t/2 〈+|

+ C∗
(
A∗eiω1t/2 −B∗e−iω1t/2

)
e−iω0t/2 〈−|

]
[
C
(
Ae−iω1t/2 +Beiω1t/2

)
e−iω0t/2 |+〉

+ C
(
Ae−iω1t/2 −Beiω1t/2

)
eiω0t/2 |−〉

]

= |C|2
[
|A|2 + |B|2 +A∗Be2iω1t/2 +AB∗e2ω1t/2

+ |A|2 + |B|2 −A∗Be2iω1t/2 −AB∗e2ω1t/2

]
= |C|2 · 2

(
|A|2 + |B|2

)
=⇒ |C|2 =

1

2
(
|A|2 + |B|2

)
lets take C to be the real solution

C =
1√

2
(
|A|2 + |B|2

)
We can then express |ψ〉 as

|ψ(t)〉 .= 1√
2
(
|A|2 + |B|2

)((Ae−iω1t/2 +Beiω1t/2
)
e−iω0t/2(

Ae−iω1t/2 −Beiω1t/2
)
eiω0t/2

)

It can be seen that there must be some relationship between A and B. To
look at this, lets let

A = r1e
θ1 B = r2e

iθ2

5It seems to sound better to me to write as if I were multiple people. ”I must make sure. . . ”
or ”Now I am now going to. . . ” just sounds wrong in many instances.
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This makes the values

A√
|A|2 + |B|2

r1√
|r1|2 + |r2|2

· eiθ1

B√
|A|2 + |B|2

r2√
|r1|2 + |r2|2

· eiθ2

Lets let φ represent the relationship between the magnitudes of A and B so that

A√
|A|2 + |B|2

= sinφ
B√

|A|2 + |B|2
= cosφ

With this, the state function can be written as

|ψ(t)〉 .= 1√
2

((
sin(φ)eiθ1e−iω1t/2 + cos(φ)eiθ2eiω1t/2

)
e−iω0t/2(

sin(φ)eiθ1e−iω1t/2 − cos(φ)eiθ2eiω1t/2
)
eiω0t/2

)
The Probability function To simplify things, P+(t) and P−(t) will be de-
rived.

P+ = |〈+|ψ(t)〉|2

=

∣∣∣∣ 1√
2

(
sin(φ)eiθ1e−iω1t/2 + cos(φ)eiθ2eiω1t/2

)
e−iω0t/2

∣∣∣∣2
=

1

2

∣∣∣e−iω0t/2
∣∣∣2 · (sin(φ)e−iθ1eiω1t/2 + cos(φ)e−iθ2e−iω1t/2

)(
sin(φ)eiθ1e−iω1t/2 + cos(φ)eiθ2eiω1t/2

)
=

1

2

(
sin2(φ) + cos2(φ) + sin(φ) cos(φ)e−i[(θ1−θ2)−(ω1t/2+ω1t/2)] + sin(φ) cos(φ)ei[(θ1−θ2)−(ω1t/2+ω1t/2)]

)
=

1

2

[
1 + sin(φ) cos(φ)

(
ei[(θ1−θ2)−(ω1t/2+ω1t/2)] + e−i[(θ1−θ2)−(ω1t/2+ω1t/2)]

)]
=

1

2
[1 + 2 sin(φ) cos(φ) cosh(i[(θ1 − θ2)− (ω1t/2 + ω1t/2)])]

=
1

2
+ sin(φ) cos(φ) cos[(θ1 − θ2)− (ω1t)]

=
1

2
+ sin(φ) cos(φ) cos(∆θ − ω1t)

P− = 1− P+

=
1

2
− sin(φ) cos(φ) cos(∆θ − ω1t)

where ∆θ = θ1 − θ2. This will also hold true for
∣∣∣ψ̃(t)

〉
as the only difference

will be the e±iω0t/2 term which can be pulled out and delt with seperatly. Once
you pull this term out, take the absolute value and square it, it just ends up
being one and not effecting the overall probability.

14



b):

First, what is P+(0) and P−(0)?

P+(0) =
1

2
+ sin(φ) cos(φ) cos(∆θ)P−(0) =

1

2
− sin(φ) cos(φ) cos(∆θ)

Now, what are P+( πω1
) and P−( πω1

)?

P+

(
π

ω1

)
=

1

2
+ sin(φ) cos(φ) cos

(
∆θ − ω1

π

ω1

)
=

1

2
+ sin(φ) cos(φ) cos(∆θ − π)

=
1

2
− sin(φ) cos(φ) cos(∆θ)

P−
(
π

ω1

)
=

1

2
− sin(φ) cos(φ) cos

(
∆θ − ω1

π

ω1

)
=

1

2
− sin(φ) cos(φ) cos(∆θ − π)

=
1

2
+ sin(φ) cos(φ) cos(∆θ)

Yes, this does the thing it is supposed to do.6

c)

Since the state starts in |+〉, φ = π/4 and ∆θ = 0. Lets have θ1 = 0 and θ2 = 0.
We then have

|ψ(t)〉 .= 1

2

((
e−iω1t/2 + eiω1t/2

)
e−iω0t/2(

e−iω1t/2 − eiω1t/2
)
eiω0t/2

)
Lets go back to outP+(t) and P−(t) equations.

P+

(
π

2ω1

)
=

1

2
+ sin(φ) cos(φ) cos

(
∆θ − ω1

(
π

2ω1

))
=

1

2
+ sin

(π
4

)
cos
(π

4

)
cos
(

0− π

2

)
=

1

2
+

(
1√
2

)(
1√
2

)
cos
(π

2

)
=

1

2
+

1

2
(0)

=
1

2

6this is usually the time in the problem where I find I had made a mistake as this diddn’t
do the thing it was supposed to do many times
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P−
( π

2ω

)
=

1

2
− sin(φ) cos(φ) cos

(
∆θ − ω1

(
π

2ω1

))
=

1

2
− sin

(π
4

)
cos
(π

4

)
cos
(

0− π

2

)
=

1

2
−
(

1√
2

)(
1√
2

)
cos
(π

2

)
=

1

2
− 1

2
(0)

=
1

2

d)

As previously discussed, the differences in the probabilities considering |ψ(t)〉
and

∣∣∣ψ̃(t)
〉

are not apparent. However, in terms of solving the differential equa-

tions for their coefficients, it is much easier to consider
∣∣∣ψ̃(t)

〉
than it is to

consider |ψ(t)〉.

Problenm #3.17

Consider an electron neutrino with an energy of 8MeV . How far must this
neutrino travel befor it oscillates to a muon neutrino? Assume the neutrino
mixing parameters given in the text. How many complete oscillations (ve →
vµ → ve) will take place if this neutrino travels from the sun to the earth?
Through the earth?

Sln:

From equation (3.79) in the book, we know that the probability an electron
neutrino will be detected to be a muon neutrino is

Pve→vµ = sin2(θ) sin2

(
(m2

1 −m2
2)Lc3

4Eh̄

)
This implies the probability of detecting the particle as being a muon neu-

trino is maximum when

(m2
1 −m2

2)Lc3

4Eh̄
= π · n+

π

2
, n = 1, 2, 3, . . .

According to the text,

m2
1 −m2

2 ≈ 8× 10−5eV2/c4
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How far must it travel before it ocillates to a neutrino? THe shortest
distance it must travel before it hits its maximum muon-neutrino likelyness is
the length that satisfies

π

2
=

(m2
1 −m2

2)Lc3

4Eh̄

L =
4Eh̄π

2(m2
1 −m2

2)c3

L =
2Eh̄π

(8×10−5eV2)
c4 c3

L =
2Eh̄πc

(8× 10−5eV2)

L =
(2)(8MeV)(1.0545718× 10−34m2Kg/s)(π)(2.99792458× 108 m

s )

(8× 10−5eV2)

L = 19.844582fm

How many ocillations will take place from the sun to earth? It can be
seen that the distance for one ocillation is going to be double the distance for
a half an ocillation. The abouve calculated a havlf ocillation. Therefore there
is one neutrino ocillation for every ω = 2 · 19.844582fm = 39.72891648fm.The
distance from the earth to the sun is AU = 1.49597870700×1011m. The number
of ocillations from the earth to the sun can be calculated by

AU

ω
=

1.49597870700× 1011m

39.72891648fm
= 5.032066029× 1024

This is about 5 septillion ocillations.

How many ocillations through the earth? The earth has a diameter of
d = 1.2756273× 107m.

d

ω
= 1.2756273× 107m39.72891648fm = 3.210828316× 1020

This is about 321 quintillion ocillations.
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